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Time-dependent one-dimensional spin-1 Ising system with weak coupling
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A modified version of Glauber’s one-dimensional spin relaxation model is applied to a spin-1 Ising chain in
order to study the time dependence of the system in the weak-coupling limit. The individual spin-1 Ising
particles are assumed to interact with the heat bath, which causes them to change their states randomly in time.
Coupling between the particles is introduced through the assumption that the transition probabilities for any
one spin-1 Ising particle depends on the state of the neighboring spin-1 Ising particles. A special assumption
about the rate constants is chosen such that the average values of the dipole moment will return to the
equilibrium value. We establish the system of rate equations for average values of the dipole and quadruple
moments, as well as their coupling. The Ising interaction between the spin-1 particles is assumed to be weak
compared to the coupling with the heat reservoir. In this way we can terminate the hierarchy and solve the
problem of a linear chain with periodic boundary conditions, using the Fourier transformation. The resulting
secular equation determines two sets of relaxation times and two sets of eigenvectors. From this equation both
relaxation times are determined by a perturbation metf®#063-651X97)12505-3

PACS numbd(s): 05.70.Ln, 05.50+q

[. INTRODUCTION bilities. Tanaka and Takahadlal] studied a simple dynamic
model of the spin-1 Ising system in the molecular field ap-

In recent years, sustained research effort has been utilizgatoximation and also obtained relaxation curves of order pa-
in investigating equilibrium properties of spin-1 Ising sys- rameters. They showed that only one of the two relaxation
tems (also known as the Blume-Emery-Griffiths modét  times goes to infinity at the critical temperature. They did not
order to study the thermodynamical behavior of certain coconsider the details of the interaction of the spin system with
operative phenomena such as phase separation and superfltid heat bath. Batten and Lemb¢®] studied the dynamics
ordering in Hé-He* mixtures[1], condensation and solidifi- of a spin-1 Ising system with the mean-field technique and
cation of a simple fluid and as well as binary flui],  investigated the relaxation of order parameters, but they did
tricritical points in binary and ternary fluids], microemul-  introduce the crystal field. Saito and Mar-Krumbhaar 23]
sions [4], ordering in semiconductor alloy$], electronic  giso investigated the kinetics of a spin-1 antiferromagnetic
conduction model$6], magnetic materialg7], the reentrant gjng model using the time-dependent Ginzburg-Landau
phenomenon in phase diagraf®, critical behavior and  heory and applied it to crystal growth. Achidi@4] used the
multicritical phase diagram®©-12] and study of metastable o, shace renormalization-group approach to study the dy-
and unstaple state{iS]_. Thg above calculations were_done namic behavior of a spin-1 Ising system and found the dy-
by mean-ﬂe_ld apprOX|ma'§|on§L—5,7,1q, renormalization- namic exponents. We have also studied a number of non-
group techniquef9), effective field theory8], Monte Carlo equilibrium behaviord 25,26, in particular metastable and

methods[11], and cluster variation methdd 3,14 and its ) )
modified version[12]. Besides these methods, spin-1 Isingunstable states of order parameters of a spin-1 Ising system
X ia the path probability methol®7].

systems have been studied by other techniques such as serfd . .
expansion methodEL5], the Monte Carlo renormalization  1he Ppurpose of the present paper is to study the time
technique[16], the constant coupling approximatiga], dependence of_ the_one-dlr_nensmnal spin-1 _Ismg syste_n_] in
and the transfer matrix methdd8]. Some exact results for the weak-coupling limit. This type of calculation was origi-
the two-dimensional honeycomb lattice have been obtainefally introduced by Glaubef28]. He studied the time-
for a limited subspace of the bilinear, biquadratic, anddependent statistic of the spinising model for strong cou-
crystal-field interaction parametef$9]. Thus, although the pling. Meijer, Tanaka, and Barry29] created the same
equilibrium properties of spin-1 Ising systems have beerproblem in the weak-coupling limit in the sense that the ex-
studied extensively, the dynamic behavior of spin-1 Isingternal field is considered to be predominant.
systems has not been as thoroughly explored because dy- The outline of the remaining part of this paper is as fol-
namic models of cooperative phenomena are of a mortows. In Sec. Il the one-dimensional spin-1 Ising system is
speculative nature. presented and the derivation of the basic master equation is
An early attempt to study the time-dependent one-given. The time dependence of the one-dimensional spin-1
dimensional spin-1 Ising system was made by ObokK2@&  Ising system is first studied for the uncoupled case and then
He used the spin-1 Bethe method, but ignored the crystdbr weak-coupling cases extensively in Secs. Il and IV, re-
field and subsequently extended it into a time-dependergpectively. A summary and the discussion of the results are
model. He also obtained relaxation times and investigatediven in Sec. V. Finally, the master equation for the pair
the temperature dependence of the static reduced suscemistribution is given in the Appendix.
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I1l. ONE-DIMENSIONAL SPIN-1 ISING SYSTEM dP(S,t)
AND DERIVATION OF THE MASTER EQUATION T E o(S; Sy, Sk—1,S+1)
The model we shall discuss is a stochastic one. The Ising S8
spinsS, on N fixed locations whose total spin values equal 1 XP(S_1,S¢,Si1)- (5)
can attain the projected valuesl, 0, and— 1. The average
value of S, can be written as The rate of change will be influenced by the external field as

well as by the state of the immediate neighborhood of the
spin. The transition probabilitie® form a multidimensional
— P , 1 matrix, which obeys the following restrictions. The first is
(So é SP(SJ @) that the sum of all the elements in a given column is zero.
The second is that for each row the elements multiplied by
the appropriate Boltzmann factor should add up to zero. The

whereS,=—1,0,1. Since the probalities are time dependenty,g; criterion expresses the fact that the rate should be equal
due to the transitions among these three values the spin ay5 ;erg when the system is in equilibrium.

erage is also a function of time. These transitions take place \ye will now assume that one is dealing with “weak cou-
because of the |nteract|or_1_of the spins .W'th a hea_t b_at_h. oBling,” that is to say, that the transition probabilities that are
the other hand, the transition probabilities of the 'nd'v'dualdependent on the magnetic fields and quadrupole field of the
spins are assumed to depend on the momentary values of theg est neighbors can be expressed as a linear function of

neighboring spins and also the heat reservoir. Therefore, thgege two fields. The transition probabilieycan be written
statistical correlations arise between the values of neighbortz

ing spins.

We shall assume that these particles are arranged in an 0(Se;SLSe_1,Scr1) = 0(Sc, S 1+M(Sc_1+ Sin)
orderly spaced linear array, i.e., they form &hparticle
chain. It is also assumed that individual spins in the chain are +d(SE_+S2 )], (6)
not totally independent stochastic functions.

The most simple Hamiltonian of the uncoupled spin-1wherem andd stand foruM/kT andD/KT, respectively.

Ising system can be written as The master equation can now be simplified using Esjs.
and(6):
H(S)=—(uHS+ASD), ) dP(S,)
-2 @(SSIP(S)

whereS,=+1, 0, or—1, which corresponds to the magne- b
tization that is the excess of one orientation over the other N 2
orientation, also called the dipole moment, :Sﬁdakes only m

w(SkaS&)Skflp(Skfbst’()

the values+1 and 0, which correspond to the quadrupole S
moment.H; andA are the fields due to the dipole and quad-
rupole moments, respectivel is also called the crystal +m Y (S80S 1P(Sk S 1)
field. We take the bilinear, biquadratic, and as well as odd S Sk+1
interaction parameters to be zero because first we want to
study the most simple case and then generalize to difficult +d D o(SGS)SE-1P(S-1.S))
cases. For the coupling case, the fields acting uporkthe S 1.5
spin will be
+d X o(SGS)SEP(SSe). (7)
He=HE"+ (S 1+ Scr)M 3 S

The condition
and

> P(S)=1 (8)
A=A+(SE_,+$,,)D, (4) B

leads to

whereM andD are the coupling constants corresponding to
the dipole and the quadrupole moments, respectively. "

A complete statistical description of this time-dependent ;k ®(S,S)=0. ©)
one-dimensional spin-1 Ising system would consist of the
knowledge of the probability functio®P(S,,t). The time  Furthermore, we have the equilibrium conditions
dependence of this probability function is assumed to be
governed by the master equation. The master equation de-
scribes the interaction between the spins and the heat bath > o(S¢.S)P(S)=0, (10
and can be written as Sk
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2 o(S0S)S-1PL(S-1,80=0, (1D

S 1.5
> o(S,S0S1PL(Sc1,80=0, (12

Sk—1.S

Equation(9) leads to, after evaluation,

o(++)+w(0+)+w(—+)=0, (1339
w(+0)+ (00 + w(—0)=0, (13b
o(+—)+w(0—-)+w(——)=0. (130
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o(++)[Po(++)+Po(—+)]+ w(+0)[P.(+0)

+PL(=0)] +o(+ =)[Pe(+—)+Pu(——)]=0,
(18

and its counterparts are found. From Et@) we have

2 sinhB

<S>°c:e*7+2 cosiB’ (199
2costp
<32>w=m=<Q>oc : (19

We define hereQ=S?, as was used by Blume, Emery,
and Griffith [1] and by Lajzerowicz and Sivardie [2,3].

The equilibrium values for the probabilities are easily found,This is different from the definitiorQ=3S?—2 used by

using Eq.(2):
Po(+)=2"tef*7, (143
P..(0)=Z"1, (14b)
P.(—)=Z"te F*, (140

with the partition function defined by
Z=eP* 7+ 1+e P,

where 8= uH /kT and y=A/kT. Equation(10) leads to
three more constraints on thes:

o(++)P.(+)+ o(+0)P..(0)+ w(+ —)P..(—)=0,
(159

w(0+)P.(+)+ w(00)P.(0)+ w(0—)P.(—)=0,
(15b

o(—+)P.(+)+ o(—0)P..(0)+ w(——)P.(—)=0.
(159

tions for the off-diagonal elements of thés:

w(+0)=v,eft7, (169
w(0+)=v,, (16b)
o(—+)=ve P (160
o(+—)=r,e", (160
w(0—)=v_, (160
w(—0)=v_e AT, (16f)

The diagonal elements are determined by @8). From Eq.
(11) one finds

o(++)[Po(++)—Pyu(—+)]+w(+0)[P.(+0)

_POO(_O)]+w(+_)[Px(+_)_PW(__)]:Or
(17)

Chen and Lewvy7] and Keskin and co-workeis3,25,28.
The last definition ensures th@=0 at infinite temperature.

IIl. UNCOUPLED SPIN-1 ISING CHAIN

It may be helpful to begin our discussion of time-

dependent processes with an extremely simple case: a single

spin-1 Ising particle. We allow the particle to interact with a

heat reservoir that induces spontaneous flips among the val-

uesS,=+1, 0, and—1, with a given transition probability
per unit time w. If one makes no additional assumptions
about the transition probabilities, i.e., using Ebp), one can
see that the relaxations 68,) and{Q,) are, in general, not

independent of each other. However, in this paper we will
make a special assumption about the rate constant, which we

will choose in such a way th&8,) returns to the equilibrium

value(S..). In this case the evaluation of the relaxation equa-

tion of the individual spins shows thag,) and(Q,) relax

separately, i.e., independently of each other. However, we
will see that this is no longer the case in the weak-coupling
approximation. The appearance of the temperature in the
nonequilibrium equation is due to the requirement that the
These conditions are fulfilled by the following set of rela- master equation must fulfill detailed balancing. In this model
the relaxation time is always finite since the model does not
contain any cooperative transitions, which usually give rise

to infinite relaxation at the critical temperature.

IV. WEAKLY COUPLED SPIN-1 ISING CHAIN

In the spin-1 model we are dealing with eight averages.
These averages can be expressed as linear combination of the

joint probabilities as
(S)=P(++)+P(+0)+P(+—)—P(—+)
—P(=0)=P(-~),
(Q=P(++)+P(+0)+P(+—)+P(—+)+P(-0)
+P(=—),
(Sc+1)=P(++)+P(0+)+P(=+)=P(+—-)=P(0-)
—P(=—),

(Qus1)=P(++)+P(0+)+P(~+)+P(+~)+P(0-)

and two similar equations can be established by changing the

first label. Also from Eq(12)

+P(=-),
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(SkSk+1)=P(++)=P(+—)=P(=+)+P(-—),
(20)

(QuQk+1)=P(++)+P(+—)+P(=+)+P(-—),
(SQu+1)=P(++)+P(+—)=P(=+)=P(——),

(QuScs1)=P(++)=P(+=)+P(~+)=P(~ ),

1= > P(SSci1)-
SkSk+1

The inverse of these equations determinesRieas linear
combinations of these averages and the number 1, which
appears only in th&(00). From Eqs(17)—(19) one obtains

(S Sks 1) =(S)2=S2=2Z"24 sint?B,

(SQk+1)==(S)=(Q)==5.Q.=Z *4 sintg COSfﬁ,(Zl)

(QQu+ 1)-={Q)2=Q%=Z"24 cosRkp.

The general result of these calculations 8¢ and{Q,) is
given by

% =a1(So +ax( Q) +az+ay(m(S- 1S9 +d(Qk-1S)

+M(SSc+1) +A(SQx 1)) +ax(M(Sc_1Qx)
+d(Qx-1Qi) + M(QySk+ 1) + d(QiQx+1))

+ag(M(S,— 1)+ d(Qy—1) +M(Sy1 1)+ d(Qy 1)),
(223

d(Qe)
T b1(S) +bx( Qi)+ b3+ b (M(S 1S+ d(Qx—1Sy)

+M(S S+ 1)+ d(SkQx+1)) + ba(M(S—1Qy)
+d(Qy—1Qi) + M(Q S+ 1) + d(QxQx+ 1))

+b3(M(S— 1)+ d(Qx—1) +M(Sy; 1) +d(Qx1 1)),
(22b

where
a;=—1/2v,.+v_)—2v, coshp,
a,=—1/2v,—v_)—2v,8inhB— (v, el 7—p_e F17),
az=v+efr—y_e A7,
bi=—-12v,—v_),
by=—12v, +v_)— (v, ef 7+ v _e FH7),

bg=v+eft7+p_e B,
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1 d(S)
S = (S0~ (80) M S )~ (S)(Sc1))

—d((SQx-1) — (S ={Qx-1)) — M({(SSc+ 1)
— (S e{Sk+1)) — A((SkQx+1) — (S =(Qxk+1)).

(239
A% (@ (@M@
—(Qu) o Sc-1)) —d({QuQx-1)
—(Qi=(Q-1)) = M({QiSk+1)
= (Qu) o Sk 1)) —d({QuQx+1)
—(Qi)=( Qk+1))- (23b)

These equations can be simplified if one introduces the rela-
tive deviations from the equilibrium

(249

(24b)

Xg=(S)—S..,
XkQ:<Qk>_Qoo-

which lead to

1 dXE S Ss S Qs Q
27 dt Xe= MY 21— SeXpo 1) —d (Yo = Su X g)
—m(YES-S.XE, ) —d(YR3-8.X2, 1), (259
1 dXQ
— g = R MR QX ) —d(YRE - QX )

MY QuXg. 1) —d(YRO-Q.XP, ;). (25D

Similar equations can be found for the coupling averages
using in the master equation for the pair distribution func-
tion; see Appendix. The result is

We now make a special assumption about the rate constants
v, i.e,, v, =v_=w andv,=ve’. Here we are guided by the
necessity tha{S,) should return to the equilibrium value
(Sy)-. - After this modification we obtain

1 dYes ss s s
V_Z dt == 2Y . SOX S X (250
1 dvse
oS XY, (250
1 dvos
vZ d: :_ZYKQS+S°°XS+Q°°XE+1’ (256
1 dyoe
— g = 2R QR QR (250
where
YR5=(SSc+1) — S.2, (269
YR9=(SQx+1)— S-Q-., (26b)
YR5=(QSes 1) — S-Q-., (260
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YR9=(QuQu+1) — Q% (269  and
These rate equations form the starting point for the solution
of the problem.

Equations(25) form a set of N coupled equations in
X, X2, Y5, YEQ, YRS, YRQ. They can be solved by using a
Fourier transform, which automatically satisfies the bound-
ary condition that spins 0 anNl are equivalent. Hence we wherer depends o, the Fourier component. The equations

al(i)(t):al(i)(o)eft/f(l) (i=1,...,9, (28

introduce of motion
X aV
XQ aj? dal’ .
YES :i E al(g) e27Ti|k/N (27) dt ZZV; Mi]a‘fj) ) (29)
e TN | e
YkQ a|(5)
YR© a(® using the matrixM,
mCle _1+dCle O —ng —m _dC2
C3S. 0 -2 0 0 0
M=l q. cis. o -2 o o | (30
3 Q- S, 0 0 -2 0
0 ’Z‘Qw 0 0 0 -2

and usingC,=2 cos2rl/N, C,=2e~ """Ncosml/N, and C, -C,Q. C;S.
=e 2™/N and their complex conjugates. [TL]:Nrm[ m d } (333
To find the relaxation times requires the solution of the
secular determinant
C,S.
Det(A1—M)=0, (31) [TR]=Nrm[m ClQJ’ (33b)

with A= —1/Zvr. Ignoring the correlations, i.e., using only
the four elements in the left upper corner of the determinantwith the normN,,, given by MmC;S.+dC;Q..) 2 This

we find two solutions transformation is now applied to thex& matrix given by
Eq. (30. As a result of this, the matrix elements

1 Mis,...,M1g and Mos,...,Mos Will be replaced by linear
—=7Zv, (32a combinations.  Similarly, the matrix elemements

1 Mjzq,...,Mg1 @and Ms,,...,Mg Will be replaced by linear

combinations, using the transformation matid&sand TR.
A first-order perturbation calculation was applied to this new

T_ZZZV(l_mclsﬁ_dlew)' (32D matrix. This result in the corrected eigenvalues

It is interesting to notice that the relaxations @) and

22 242
(Qy) are now coupled even in zeroth order. In order to diag- i:ZV 142 mS, —2mdsS,Q..cos2rl/N+d"Qx,
onalize this submatrix, we introduce the right and left eigen- 7, mS,+dQ,, ’
vectors (343

1 m2S2cos2rl/N—2mdS.Q..(1+ cos2rl/N) +d?Q2cos2r| /N
—=Zv|1-2(mS,+dQ,)cos2rl/N+4

7'2 mSo‘l‘ de )’ (34b)



5348

and

MUSTAFA KESKIN AND PAUL H. E. MEIJER 55

financial support through NATONATO Grant No. B2, as

well as for the hospitality of the Physics Department of the

1
—=27v.
73

(340

The last relaxation time is the uncorrected value, given for
reference only. The discussion of these results will be given
in the next section.
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APPENDIX: MASTER EQUATION
FOR THE PAIR DISTRIBUTION FUNCTION

The master equation for the pair distribution function

(also called the time derivative of the two-spin distribution

V. SUMMARY AND DISCUSSION

In this paper, we have studied the time-dependent one-

dimensional spin-1 Ising system by means of the modified gp(s, ,S,. )

version of Glauber’s one-dimensional spin relaxation model

and the resulting set of rate equations for the average values

of dipole and quadrupole moments, as well as their coupling.
The results are found by using the following assumptidns.
The transition probabilities for any spin-1 Ising particle de-
pends on the state of the neighboring spin-1 Ising particles.
This dependence is determined, in part, by the detailed bal-
ancing condition obeyed by the equilibrium state of the sys-
tem. (ii) The rate constants are chosen in such a way that the
average values of the dipole moment will return to the equi-
librium value. (ii) The Ising interaction between the spin-1
particles is assumed to be weak compared to the coupling
with the heat bath and in this way we obtain a cutoff after a
finite set of equations. The rate equations are solved by using
a Fourier transform, which automatically satisfies the bound-
ary condition that spins 0 and are identical.

Finally, we determine the two relaxation times by using a
perturbation method. The secular matrix of the problem con-
tains a 2X2 subspace, which, after diagonalization, leads to
two slightly different relaxation times; and r,. These two

function) is given by

= 2 @ (S, S+ 155k S+ 1) P(Sk Sk 1)

dt S
= > o(S.S)8(Sc:1—Sii1)
SiSeis
XP(S, S+ E @(Sc11,Sk+1)
SiSei
X 8(Sc—S)P(S¢,Sk+1)s (A1)
dP(S,S.+
%=2 (S SO P(Sk S 1)
s
+ 2 o(Sr1:S0 1)P(Se,Ski 1)
(A2)

relaxation times are further altered due to the presence of the ) , .
double relaxation times of the pair function. This modifica- 1€ré two assumptions are madg) the function depends

tion is worked out using first-order perturbation theory.
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