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Time-dependent one-dimensional spin-1 Ising system with weak coupling
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A modified version of Glauber’s one-dimensional spin relaxation model is applied to a spin-1 Ising chain in
order to study the time dependence of the system in the weak-coupling limit. The individual spin-1 Ising
particles are assumed to interact with the heat bath, which causes them to change their states randomly in time.
Coupling between the particles is introduced through the assumption that the transition probabilities for any
one spin-1 Ising particle depends on the state of the neighboring spin-1 Ising particles. A special assumption
about the rate constants is chosen such that the average values of the dipole moment will return to the
equilibrium value. We establish the system of rate equations for average values of the dipole and quadruple
moments, as well as their coupling. The Ising interaction between the spin-1 particles is assumed to be weak
compared to the coupling with the heat reservoir. In this way we can terminate the hierarchy and solve the
problem of a linear chain with periodic boundary conditions, using the Fourier transformation. The resulting
secular equation determines two sets of relaxation times and two sets of eigenvectors. From this equation both
relaxation times are determined by a perturbation method.@S1063-651X~97!12505-3#

PACS number~s!: 05.70.Ln, 05.50.1q
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I. INTRODUCTION

In recent years, sustained research effort has been uti
in investigating equilibrium properties of spin-1 Ising sy
tems ~also known as the Blume-Emery-Griffiths model! in
order to study the thermodynamical behavior of certain
operative phenomena such as phase separation and supe
ordering in He3-He4 mixtures@1#, condensation and solidifi
cation of a simple fluid and as well as binary fluids@2#,
tricritical points in binary and ternary fluids@3#, microemul-
sions @4#, ordering in semiconductor alloys@5#, electronic
conduction models@6#, magnetic materials@7#, the reentrant
phenomenon in phase diagrams@8#, critical behavior and
multicritical phase diagrams@9–12# and study of metastabl
and unstable states@13#. The above calculations were don
by mean-field approximations@1–5,7,10#, renormalization-
group techniques@9#, effective field theory@8#, Monte Carlo
methods@11#, and cluster variation method@13,14# and its
modified version@12#. Besides these methods, spin-1 Isi
systems have been studied by other techniques such as
expansion methods@15#, the Monte Carlo renormalization
technique@16#, the constant coupling approximation@17#,
and the transfer matrix method@18#. Some exact results fo
the two-dimensional honeycomb lattice have been obtai
for a limited subspace of the bilinear, biquadratic, a
crystal-field interaction parameters@19#. Thus, although the
equilibrium properties of spin-1 Ising systems have be
studied extensively, the dynamic behavior of spin-1 Is
systems has not been as thoroughly explored because
namic models of cooperative phenomena are of a m
speculative nature.

An early attempt to study the time-dependent on
dimensional spin-1 Ising system was made by Obokata@20#.
He used the spin-1 Bethe method, but ignored the cry
field and subsequently extended it into a time-depend
model. He also obtained relaxation times and investiga
the temperature dependence of the static reduced susc
551063-651X/97/55~5!/5343~7!/$10.00
ed

-
uid

ries

d

n
g
dy-
re

-

al
nt
d
pti-

bilities. Tanaka and Takahashi@21# studied a simple dynamic
model of the spin-1 Ising system in the molecular field a
proximation and also obtained relaxation curves of order
rameters. They showed that only one of the two relaxat
times goes to infinity at the critical temperature. They did n
consider the details of the interaction of the spin system w
the heat bath. Batten and Lemberg@22# studied the dynamics
of a spin-1 Ising system with the mean-field technique a
investigated the relaxation of order parameters, but they
introduce the crystal field. Saito and Mu¨ller-Krumbhaar@23#
also investigated the kinetics of a spin-1 antiferromagne
Ising model using the time-dependent Ginzburg-Land
theory and applied it to crystal growth. Achiam@24# used the
real-space renormalization-group approach to study the
namic behavior of a spin-1 Ising system and found the
namic exponents. We have also studied a number of n
equilibrium behaviors@25,26#, in particular metastable an
unstable states of order parameters of a spin-1 Ising sys
via the path probability method@27#.

The purpose of the present paper is to study the t
dependence of the one-dimensional spin-1 Ising system
the weak-coupling limit. This type of calculation was orig
nally introduced by Glauber@28#. He studied the time-
dependent statistic of the spin-1

2 Ising model for strong cou-
pling. Meijer, Tanaka, and Barry@29# created the same
problem in the weak-coupling limit in the sense that the e
ternal field is considered to be predominant.

The outline of the remaining part of this paper is as f
lows. In Sec. II the one-dimensional spin-1 Ising system
presented and the derivation of the basic master equatio
given. The time dependence of the one-dimensional sp
Ising system is first studied for the uncoupled case and t
for weak-coupling cases extensively in Secs. III and IV,
spectively. A summary and the discussion of the results
given in Sec. V. Finally, the master equation for the p
distribution is given in the Appendix.
5343 © 1997 The American Physical Society
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II. ONE-DIMENSIONAL SPIN-1 ISING SYSTEM
AND DERIVATION OF THE MASTER EQUATION

The model we shall discuss is a stochastic one. The Is
spinsSk onN fixed locations whose total spin values equa
can attain the projected values11, 0, and21. The average
value ofSk can be written as

^Sk&5(
Sk

SkP~Sk!, ~1!

whereSk521,0,1. Since the probalities are time depende
due to the transitions among these three values the spin
erage is also a function of time. These transitions take p
because of the interaction of the spins with a heat bath.
the other hand, the transition probabilities of the individu
spins are assumed to depend on the momentary values o
neighboring spins and also the heat reservoir. Therefore
statistical correlations arise between the values of neigh
ing spins.

We shall assume that these particles are arranged i
orderly spaced linear array, i.e., they form anN-particle
chain. It is also assumed that individual spins in the chain
not totally independent stochastic functions.

The most simple Hamiltonian of the uncoupled spin
Ising system can be written as

H~Sk!52~mHsSk1DSk
2!, ~2!

whereSk511, 0, or21, which corresponds to the magn
tization that is the excess of one orientation over the ot
orientation, also called the dipole moment, andSk

2 takes only
the values11 and 0, which correspond to the quadrupo
moment.Hs andD are the fields due to the dipole and qua
rupole moments, respectively.D is also called the crysta
field. We take the bilinear, biquadratic, and as well as o
interaction parameters to be zero because first we wan
study the most simple case and then generalize to diffi
cases. For the coupling case, the fields acting upon thekth
spin will be

Hs5HS
~0!1~Sk211Sk11!M ~3!

and

D5D~0!1~Sk21
2 1Sk11

2 !D, ~4!

whereM andD are the coupling constants corresponding
the dipole and the quadrupole moments, respectively.

A complete statistical description of this time-depend
one-dimensional spin-1 Ising system would consist of
knowledge of the probability functionP(Sk ,t). The time
dependence of this probability function is assumed to
governed by the master equation. The master equation
scribes the interaction between the spins and the heat
and can be written as
g
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dP~Sk ,t !

dt
5 (

Sk21 ,Sk8 ,Sk11

v~Sk ;Sk8 ,Sk21 ,Sk11!

3P~Sk21 ,Sk8 ,Sk11!. ~5!

The rate of change will be influenced by the external field
well as by the state of the immediate neighborhood of
spin. The transition probabilitiesv form a multidimensional
matrix, which obeys the following restrictions. The first
that the sum of all the elements in a given column is ze
The second is that for each row the elements multiplied
the appropriate Boltzmann factor should add up to zero. T
last criterion expresses the fact that the rate should be e
to zero when the system is in equilibrium.

We will now assume that one is dealing with ‘‘weak co
pling,’’ that is to say, that the transition probabilities that a
dependent on the magnetic fields and quadrupole field of
nearest neighbors can be expressed as a linear functio
these two fields. The transition probabilityv can be written
as

v~Sk ;Sk8 ,Sk21 ,Sk11!5v~Sk ,Sk8!@11m~Sk211Sk11!

1d~Sk21
2 1Sk11

2 !#, ~6!

wherem andd stand formM /kT andD/kT, respectively.
The master equation can now be simplified using Eqs.~5!

and ~6!:

dP~Sk!

dt
5(

Sk8
v~Sk ,Sk8!P~Sk8!

1m (
Sk21 ,Sk8

v~Sk ,Sk8!Sk21P~Sk21 ,Sk8!

1m (
Sk8 ,Sk11

v~Sk ,Sk8!Sk11P~Sk8 ,Sk11!

1d (
Sk21 ,Sk8

v~Sk ,Sk8!Sk21
2 P~Sk21 ,Sk8!

1d (
Sk8 ,Sk11

v~Sk ,Sk8!Sk11
2 P~Sk8 ,Sk11!. ~7!

The condition

(
Sk

P~Sk!51 ~8!

leads to

(
Sk

v~Sk ,Sk8!50. ~9!

Furthermore, we have the equilibrium conditions

(
Sk8

v~Sk ,Sk8!P`~Sk8!50, ~10!
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(
Sk21 ,Sk8

v~Sk ,Sk8!Sk21P`~Sk21 ,Sk8!50, ~11!

(
Sk21 ,Sk8

v~Sk ,Sk8!Sk21
2 P`~Sk21 ,Sk8!50, ~12!

Equation~9! leads to, after evaluation,

v~11 !1v~01 !1v~21 !50, ~13a!

v~10!1v~00!1v~20!50, ~13b!

v~12 !1v~02 !1v~22 !50. ~13c!

The equilibrium values for the probabilities are easily foun
using Eq.~2!:

P`~1 !5Z21eb1g, ~14a!

P`~0!5Z21, ~14b!

P`~2 !5Z21e2b1g, ~14c!

with the partition function defined by

Z5eb1g111e2b1g,

where b5mHs /kT and g5D/kT. Equation ~10! leads to
three more constraints on thev’s:

v~11 !P`~1 !1v~10!P`~0!1v~12 !P`~2 !50,
~15a!

v~01 !P`~1 !1v~00!P`~0!1v~02 !P`~2 !50,
~15b!

v~21 !P`~1 !1v~20!P`~0!1v~22 !P`~2 !50.
~15c!

These conditions are fulfilled by the following set of rel
tions for the off-diagonal elements of thev’s:

v~10!5n1e
b1g, ~16a!

v~01 !5n1 , ~16b!

v~21 !5n2e
2b, ~16c!

v~12 !5n2e
b, ~16d!

v~02 !5n2 , ~16e!

v~20!5n2e
2b1g. ~16f!

The diagonal elements are determined by Eq.~13!. From Eq.
~11! one finds

v~11 !@P`~11 !2P`~21 !#1v~10!@P`~10!

2P`~20!]1v~12 !@P`~12 !2P`~22 !#50,
~17!

and two similar equations can be established by changing
first label. Also from Eq.~12!
,

he

v~11 !@P`~11 !1P`~21 !#1v~10!@P`~10!

1P`~20!]1v~12 !@P`~12 !1P`~22 !#50,
~18!

and its counterparts are found. From Eq.~14! we have

^S&`5
2 sinhb

e2g12 coshb
, ~19a!

^S2&`5
2 coshb

e2g12 coshb
[^Q&` . ~19b!

We define hereQ5S2, as was used by Blume, Emery
and Griffith @1# and by Lajzerowicz and Sivardie`re @2,3#.
This is different from the definitionQ53S222 used by
Chen and Levy@7# and Keskin and co-workers@13,25,26#.
The last definition ensures thatQ50 at infinite temperature

III. UNCOUPLED SPIN-1 ISING CHAIN

It may be helpful to begin our discussion of time
dependent processes with an extremely simple case: a s
spin-1 Ising particle. We allow the particle to interact with
heat reservoir that induces spontaneous flips among the
uesSk511, 0, and21, with a given transition probability
per unit timev. If one makes no additional assumption
about the transition probabilities, i.e., using Eq.~16!, one can
see that the relaxations of^Sk& and^Qk& are, in general, not
independent of each other. However, in this paper we w
make a special assumption about the rate constant, which
will choose in such a way that^Sk& returns to the equilibrium
value^S`&. In this case the evaluation of the relaxation equ
tion of the individual spins shows that^Sk& and ^Qk& relax
separately, i.e., independently of each other. However,
will see that this is no longer the case in the weak-coupl
approximation. The appearance of the temperature in
nonequilibrium equation is due to the requirement that
master equation must fulfill detailed balancing. In this mod
the relaxation time is always finite since the model does
contain any cooperative transitions, which usually give r
to infinite relaxation at the critical temperature.

IV. WEAKLY COUPLED SPIN-1 ISING CHAIN

In the spin-1 model we are dealing with eight averag
These averages can be expressed as linear combination o
joint probabilities as

^Sk&5P~11 !1P~10!1P~12 !2P~21 !

2P~20!2P~22 !,

^Qk&5P~11 !1P~10!1P~12 !1P~21 !1P~20!

1P~22 !,

^Sk11&5P~11 !1P~01 !1P~21 !2P~12 !2P~02 !

2P~22 !,

^Qk11&5P~11 !1P~01 !1P~21 !1P~12 !1P~02 !

1P~22 !,
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^SkSk11&5P~11 !2P~12 !2P~21 !1P~22 !,
~20!

^QkQk11&5P~11 !1P~12 !1P~21 !1P~22 !,

^SkQk11&5P~11 !1P~12 !2P~21 !2P~22 !,

^QkSk11&5P~11 !2P~12 !1P~21 !2P~22 !,

15 (
SkSk11

P~SkSk11!.

The inverse of these equations determines theP’s as linear
combinations of these averages and the number 1, w
appears only in theP(00). From Eqs.~17!–~19! one obtains

^SkSk11&`5^S&`
25S`

25Z224 sinh2b,

^SkQk11&`5^S&`^Q&`5S`Q`5Z224 sinhb coshb,
~21!

^QkQk11&`5^Q&`
25Q`

25Z224 cosh2b.

The general result of these calculations for^Sk& and^Qk& is
given by

d^Sk&
dt

5a1^Sk&1a2^Qk&1a31a1~m^Sk21Sk&1d^Qk21Sk&

1m^SkSk11&1d^SkQk11&!1a2~m^Sk21Qk&

1d^Qk21Qk&1m^QkSk11&1d^QkQk11&!

1a3~m^Sk21&1d^Qk21&1m^Sk11&1d^Qk11&!,

~22a!

d^Qk&
dt

5b1^Sk&1b2^Qk&1b31b1~m^Sk21Sk&1d^Qk21Sk&

1m^SkSk11&1d^SkQk11&!1b2~m^Sk21Qk&

1d^Qk21Qk&1m^QkSk11&1d^QkQk11&!

1b3~m^Sk21&1d^Qk21&1m^Sk11&1d^Qk11&!,

~22b!

where

a1521/2~n11n2!22n2 coshb,

a2521/2~n12n2!22n2sinhb2~n1e
b1g2n2e

2b1g!,

a35n1eb1g2n2e
2b1g,

b1521/2~n12n2!,

b2521/2~n11n2!2~n1e
b1g1n2e

2b1g!,

b35n1eb1g1n2e
2b1g.

We now make a special assumption about the rate cons
n, i.e.,n15n25n andn25neg. Here we are guided by th
necessity that̂ Sk& should return to the equilibrium valu
^Sk&` . After this modification we obtain
ch

nts

1

nZ

d^Sk&
dt

52~^Sk&2^Sk&`!2m~^SkSk21&2^Sk&`^Sk21&!

2d~^SkQk21&2^Sk&`^Qk21&!2m~^SkSk11&

2^Sk&`^Sk11&!2d~^SkQk11&2^Sk&`^Qk11&!,

~23a!

1

nZ

d^Qk&
dt

52~^Qk&2^Qk&`!2m~^QkSk21&

2^Qk&`^Sk21&!2d~^QkQk21&

2^Qk&`^Qk21&!2m~^QkSk11&

2^Qk&`^Sk11&!2d~^QkQk11&

2^Qk&`^Qk11&!. ~23b!

These equations can be simplified if one introduces the r
tive deviations from the equilibrium

Xk
S5^Sk&2S` , ~24a!

Xk
Q5^Qk&2Q` . ~24b!

which lead to

1

nZ

dXk
S

dt
52Xk

S2m~Yk21
SS 2S`Xk21

S !2d~Yk21
QS 2S`Xk21

Q !

2m~Yk
SS2S`Xk11

S !2d~Yk
QS2S`Xk11

Q !, ~25a!

1

nZ

dXk
Q

dt
52Xk

Q2m~Yk21
SQ 2Q`Xk21

S !2d~Yk21
QQ 2Q`Xk21

Q !

2m~Yk
QS2Q`Xk11

S !2d~Yk
QQ2Q`Xk11

Q !. ~25b!

Similar equations can be found for the coupling avera
using in the master equation for the pair distribution fun
tion; see Appendix. The result is

1

nZ

dYk
SS

dt
522Yk

SS1S`Xk
S1S`Xk11

S , ~25c!

1

nZ

dYk
SQ

dt
522Yk

SQ1Q`Xk
S1S`Xk11

Q , ~25d!

1

nZ

dYk
QS

dt
522Yk

QS1S`Xk
Q1Q`Xk11

S , ~25e!

1

nZ

dYk
QQ

dt
522Yk

QQ1Q`Xk
Q1Q`Xk11

Q , ~25f!

where

Yk
SS5^SkSk11&2S`

2, ~26a!

Yk
SQ5^SkQk11&2S`Q` , ~26b!

Yk
QS5^QkSk11&2S`Q` , ~26c!
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Yk
QQ5^QkQk11&2Q`

2. ~26d!

These rate equations form the starting point for the solu
of the problem.

Equations~25! form a set ofN coupled equations in
Xk
S ,Xk

Q ,Yk
SS,Yk

SQ,Yk
QS,Yk

QQ . They can be solved by using
Fourier transform, which automatically satisfies the bou
ary condition that spins 0 andN are equivalent. Hence w
introduce

S Xk
S

Xk
Q

Yk
SS

Yk
SQ

Yk
QS

Yk
QQ

D 5
1

AN ( S al
~1!

al
~2!

al
~3!

al
~4!

al
~5!

al
~6!

D e2p i lk /N ~27!
he

ly
n

g
n

n

-

and

al
~ i !~ t !5al

~ i !~0!e2t/t~ l ! ~ i51,...,6!, ~28!

wheret depends onl , the Fourier component. The equatio
of motion

dal
~ i !

dt
5Zn(

j
M i j al

~ j ! , ~29!

using the matrixM ,
M5S 211mC1S`

mC1Q`

C2*S`

Q`

C3*Q`

0

dC1S`

211dC1Q`

0
C3*S`

S`

C2*Q`

2mC2
0

22
0
0
0

2d
2mC3
0

22
0
0

2dC3

2m
0
0

22
0

0
2dC2

0
0
0

22

D , ~30!
ts

ts

ew
and usingC152 cos2p l /N, C252e2p l i /Ncospl/N, andC3
5e22p l i /N and their complex conjugates.

To find the relaxation times requires the solution of t
secular determinant

Det~l12M !50, ~31!

with l521/Znt. Ignoring the correlations, i.e., using on
the four elements in the left upper corner of the determina
we find two solutions

1

t1
5Zn, ~32a!

1

t2
5Zn~12mC1S`2dC1Q`!. ~32b!

It is interesting to notice that the relaxations of^Sk& and
^Qk& are now coupled even in zeroth order. In order to dia
onalize this submatrix, we introduce the right and left eige
vectors
t,

-
-

@TL#5NrmF2C1Q`

m
C1S`

d G , ~33a!

@TR#5NrmF dm C1S`

C1Q`
G , ~33b!

with the normNrm given by (mC1S`1dC1Q`)
21/2. This

transformation is now applied to the 636 matrix given by
Eq. ~30!. As a result of this, the matrix elemen
M13,...,M16 and M23,...,M26 will be replaced by linear
combinations. Similarly, the matrix elememen
M31,...,M61 and M32,...,M62 will be replaced by linear
combinations, using the transformation maticesTR andTR.
A first-order perturbation calculation was applied to this n
matrix. This result in the corrected eigenvalues

1

t1
5ZnS 112

m2S`
222mdS̀ Q`cos2p l /N1d2Q`

2

mS̀ 1dQ`
D ,
~34a!
1

t2
5ZnS 122~mS̀ 1dQ`!cos2p l /N14

m2S`
2 cos2p l /N22mdS̀ Q`~11cos2p l /N!1d2Q`

2 cos2p l /N

mS̀ 1dQ`
D , ~34b!
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and

1

t3
52Zn. ~34c!

The last relaxation time is the uncorrected value, given
reference only. The discussion of these results will be gi
in the next section.

V. SUMMARY AND DISCUSSION

In this paper, we have studied the time-dependent o
dimensional spin-1 Ising system by means of the modifi
version of Glauber’s one-dimensional spin relaxation mo
and the resulting set of rate equations for the average va
of dipole and quadrupole moments, as well as their coupl
The results are found by using the following assumptions~i!
The transition probabilities for any spin-1 Ising particle d
pends on the state of the neighboring spin-1 Ising partic
This dependence is determined, in part, by the detailed
ancing condition obeyed by the equilibrium state of the s
tem.~ii ! The rate constants are chosen in such a way tha
average values of the dipole moment will return to the eq
librium value. ~iii ! The Ising interaction between the spin
particles is assumed to be weak compared to the coup
with the heat bath and in this way we obtain a cutoff afte
finite set of equations. The rate equations are solved by u
a Fourier transform, which automatically satisfies the bou
ary condition that spins 0 andN are identical.

Finally, we determine the two relaxation times by using
perturbation method. The secular matrix of the problem c
tains a 232 subspace, which, after diagonalization, leads
two slightly different relaxation timest1 andt2 . These two
relaxation times are further altered due to the presence o
double relaxation times of the pair function. This modific
tion is worked out using first-order perturbation theory.
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APPENDIX: MASTER EQUATION
FOR THE PAIR DISTRIBUTION FUNCTION

The master equation for the pair distribution functio
~also called the time derivative of the two-spin distributio
function! is given by

dP~Sk ,Sk11!

dt
5 (

Sk8 ,Sk118
v~Sk ,Sk11 ;Sk8 ,Sk118 !P~Sk8 ,Sk118 !

5 (
Sk8 ,Sk118

v~Sk ,Sk8!d~Sk112Sk118 !

3P~Sk8 ,Sk118 !1 (
Sk8 ,Sk118

v~Sk11 ,Sk118 !

3d~Sk2Sk8!P~Sk8 ,Sk118 !, ~A1!

dP~Sk ,Sk11!

dt
5(

Sk8
v~Sk ;Sk8!P~Sk8 ,Sk11!

1 (
Sk118

v~Sk11 ;Sk118 !P~Sk ,Sk118 !.

~A2!

Here two assumptions are made:~i! the function depends
parametrically on the state of the neighbors and~ii ! the func-
tion depends linearly on the neighboring spins. However,
terms of higher order in the coupling constant are neglec
i.e., we assume thatm andd are very small. This equation
can easily be modified for the joint probability function
P(Qk ,Qk11), P(Sk ,Sk11), etc.
.
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